Energy Efficient High Performance Computing

William Tschudi February, 2011 San Diego, CA WFTschudi@lbl.gov

UC Berkeley's <u>C</u>omputational <u>R</u>esearch and <u>T</u>heory (CRT) Facility

- A new high performance supercomputer center for scientific computing in Berkeley, California
- High Performance Computing (HPC) center on first floor
 - 32,000 square feet computer room
 - 7.5 MW initial total power requirement, expanding to 17 MW
- Offices on second and third floors
- Mechanical space below HPC, chiller plant adjacent
- Total gross square feet 126,000

CRT Facility

CRT Facility rendering

Site:

CRT building:

12 MW; 77 GWh; 2,132k GSf

17 MW; 150 GWh; 32k computer room

Effect of CRT to overall campus:

peak power x 2.4 annual electricity x 2.9

CRT Project objectives

Major Project Objectives

- Leading HPC capability
- Model of energy efficiency
- Maximum flexibility for future systems
 - Computer systems layout
 - Air and/or liquid cooling
 - Front to back or bottom to top airflow
- Energy efficient infrastructure
 - PUE 1.2 or better based on annual energy
 - Efficient system design
 - Possible use of waste heat

Design advantages for Efficiency

- Mild climate suitable for "free" cooling
- Ability to use ASHRAE TC 9.9 recommended temperature range and expanded humidity range
- Use of air and/or water economizers
- Integrated design building and mechanical systems
- Minimal UPS
- Adjacent use for waste heat

Many facets of efficiency

Flexibility for air or liquid cooling

- Future Systems could:
 - Continue to be air cooled

- Have liquid cooling to the processors
- Use combination of refrigerant and liquid
- Others?
- Network or storage equipment may continue air cooling even if servers require liquid

Large efficient air handlers

Applying sound HVAC engineering for air movement:

- Efficient fans and motors
- Low system pressure drop/ face velocity
- Variable speed
- Modular layout
- Effective air management

Design Pressure Drops Across Major HVAC Components		
Components	Initial Pressure Drop (in. w.g.)	
Outside Air Louvers	0.15	
Outside Air Dampers	0.20	
Filters	0.35	
Direct Evap. Media Pad	0.25	
Chilled Water Coil	0.25	
Ductwork+Plenum+Outlets	0.30 11	
Total	1.5	

Modular design

Building and system modular build out

- Add as you go
- Build only what you need
- Space to add systems later
- Typically 4 or more systems

Modular cooling plant

- Large headers sized for efficient operation for future loads -even higher efficiency in the interim
- All pumps, fans, and compressors are variable speed
- Chillers bid as an option and may not be installed
- Optimal control for maximum overall plant COP at any load and outdoor condition
- Space for additional chillers and cooling towers for future loads
- Headers, valves and caps for modularity and future flexibility allow additions without shutting down

Cross section

Liquid cooling capability

Use of chilled water or treated water connected to cooling tower through heat exchanger for free cooling

- 4 pipe system allows all of one or the other or mixing
- Blanked off for future addition
- Space for piping provided
- Reset for efficient operation

Part load operation

HPC systems operate at near full utilization however systems will be added and removed over the life of the facility varying the cooling requirements significantly

- Modular
- Variable speed everything
 - tower fans
 - chilled water pumps
 - condensing water pumps
 - chiller
 - exhaust fans
 - main air handler fans
- Controls

Environmental conditions

Design Conditions:

- Summer 100F DB/ 65 MWB; Winter 37.5F (99.5% Oakland ASHRAE)

Environmental conditions

CRT design guidelines: 60 to 75F DB; 30-60% RH

Annual Psychrometric Chart of Oakland, CA

(relative humidity lines are stepped by 10%, wetbulb lines by 10 degrees F)

Environmental conditions – operating modes for air cooling

Operating Mode	Number of Hours Per Year	Percent of Year
Mix of outside and return air	8200 hours	93%
Direct evaporative cooling	45	0.5 %
Direct evaporative cooling and chilled water coil	38	0.4%
Chilled water coil	510	6%

Air economizer and evaporative cooling

Direct evaporative cooler doubles as humidifier

- Humidity allowed to float within recommended range
- Evaporative cooler has more pressure drop but lower life cycle cost relative to spray nozzles or ultrasonic humidifier

Water side economizer

Predicted HPC Performance

PUE of 1.16 based on annual energy

Heat recovery is on top of this

ERF = Reuse Energy/Total Energy

= Total Infrastructure - Reuse/IT

Reuse Amount is yet to be determined

Electrical systems efficiency

- Minimal use of UPS
- Efficient UPS at operating conditions
- Premium efficiency motors
- Efficient transformers
- Lighting Controls

Commissioning

- Commissioning agent (and Construction Manager) involved at design stage
- Commissioning plan developed early
- Plan to commission all systems

Monitoring

- Integrated monitoring and control possibly using wireless sensors
- Wireless monitoring is in place at two other LBNL data centers
- Real time PUE monitoring capability
- Environmental monitoring many points
- System and sub-system monitoring

Wrap up

- UC's supercomputer center will demonstrate some advanced efficiency concepts while being a leading scientific computing center
- Budgets are always a challenge
- Project is facing legal challenges
- Stay tuned

Questions?

